Jetzt geht’s in’s Eingemachte! 

Im folgenden Artikel erklärt Georg Scharfenberg, wie aus der Solarzelle der Solargenerator aufgebaut ist, mit dem aus der Sonne der elektrische Strom für die Energiewende erzeugt wird. Der folgende Artikel ist der vierte in einer kleinen Serie zur Erzeugung Erneuerbarer Energien aus Photovoltaik.

Hier geht’s zu den ersten drei Bausteinen:

(1) Grüner Strom aus der Steckdose

(2) Energiewende mit Fotovoltaik

(3) Mitgestalten der Energiewende durch Erneuerbare Energien vor Ort

Georg Scharfenberg ist emeritierter Professor der OTH in Regensburg und ein ausgewiesener Experte für Energietechnik.Er liefert uns mit seiner Reihe eine Einführung, die in die Tiefe geht, aber trotzdem auch für Interessierte Laien verständlich sein sollte.

Photovoltaik-Anlage – Stromgenerator der Sonnenenergie 

Den Aufbau einer Photovoltaik-Anlage, ausgehend von einem Hausdach, habe ich bereits im Artikel zur „Energiewende mit Fotovoltaik“ gezeigt. Es ist hier noch einmal in Abb. 1 als Anlagenprinzip wiedergegeben, mit dem elektrische Energie aus der ‚unendlichen Energiequelle‘, der Sonne, Strom erzeugt werden kann. Das gilt für jedes Hausdach, aber auch für Industrie- und Gewerbedächer, für Parkplatzüberdachungen oder für Freiflächenanlagen. 

Abbildung 1: Aufbauprinzip einer Photovoltaik-Anlage (Quelle: Vorlesung Scharfenberg)

Die Photovoltaikzelle ist Energiewandler 

Der Schlüssel zur direkten Umwandlung des Sonnenlichts in elektrische Energie liegt in der Photovoltaikzelle. Das Prinzip ist vor mehr als 180 Jahren durch den französischen Physiker Alexandre-Edmond Becquerel entdeckt worden. Die ersten Anwendungen haben wir aber erst Ende der 50er Jahre in der Raumfahrt zur elektrischen Versorgung von Satelliten kennengelernt. 

Heute ist die Photovoltaikzelle das tragende Basiselement der erneuerbaren Energien neben den Erzeugern aus Windenergie. Die Photovoltaikzelle, auch PV-Zelle oder auch Solarzelle genannt, ist ein Halbleiterbauelement, das typischerweise aus zwei unterschiedlichen Silizium-Halbleiterschichten (unterschiedlich ‚dotiert‘) besteht, die in der Solarzelle in zwei Ebenen übereinander liegen. Ohne zu tief einzusteigen, soll hier erläutert werden, dass das Sonnenlicht von außen die obere Schicht durchdringt und in der Übergangszone (Grenzschicht) zur darunterliegenden Halbleiterebene absorbiert wird. Die Absorption, der in der Zelle nutzbaren Lichtenergie, führt zur Ladungstrennung und stellt zwei entgegengesetzte Ladungen bereit. Die unterschiedlichen Ladungen liegen als elektrische Gleichspannung an unterschiedlichen Elektroden (Anschlüssen) mit der positiven Elektrode (Plus +) und der negativen Elektrode (Minus -).

Abbildung 2: Aufbau einer Solarzelle (Quelle: BRN Pixel – Adobe Stock)

Die Nutzenergie kann an den Elektroden, in Abb. 2 an den Anschlüssen (Plus +) und (Minus -) durch elektrische Leiter abgenommen werden. Die Bezeichnung „Verbraucher“ in Abb. 2 ist symbolisch zu verstehen, denn eine einzelne Silizium-Solarzelle stellt lediglich eine elektrische Gleichspannung von ca. 0,5 Volt (0,5 V) bei optimaler Solarbestrahlung zur Verfügung. 

Das Solarmodul

Um eine nutzbare Einheit („Solarmodul“) zu erhalten, befinden sich z.B. 60 Solarzellen in serieller Kontaktierung (Leiterbahnen) gemeinsam auf einem Träger und sind z.B. unter Glas in einem Aluminiumrahmen als montagefähiges Solarmodul verbaut. Das Solarmodul bietet auf der Rückseite je einen Plus- und Minus-Anschluss. Bezogen auf das aufgeführte Beispiel mit 60 Solarzellen im Solarmodul, wird eine Modul-Leerlaufspannung (unbelastetes Modul) von 60 x 0,5 V = 30 V an den Anschlüssen auftreten. Die mechanischen Maße eines Solarmoduls sind stark abhängig von der Anzahl der Solarzellen im Modul, während die typischen Maße einer Silizium-Solarzelle 156 mm x 156 mm bis 217 mm x 217 mm betragen.

Der Solargenerator

Der für ein Projekt benötigte „Stromgenerator“ (PV-Generator oder Solargenerator genannt) muss je nach Anwendungsfall eine spezifische Leistung bereitstellen. Ohne im ersten Schritt auf Details einzugehen, ist ein Generator in Abb. 3 mit den gezeigten Teilen wie folgt strukturiert:  

Abbildung 3: Struktur des PV-Generators (Quelle: Vorlesung Scharfenberg)

Der Solarstring bestimmt die Generatorspannung

Aufbauend auf dem Konzept des Solarmoduls, bestehend aus einer Anzahl seriell geschalteter Solarzellen, wird ein Solarstring gleichermaßen nun aus einer Anzahl seriell, durch Kabelverdrahtung verbundener Solarmodule aufgebaut. Damit wird die Höhe der Generatorspannung durch die Anzahl der in Serie verbundenen Modulen festgelegt. 

Zum Beispiel:  Modulspannung 30 V, Anzahl der Module im String 20
ergibt eine Stringspannung (Generatorspannung) von 600 V (Leerlauf)

Parallele Solarstrings bestimmen die Generatorleistung

Wie in Abb. 3 gezeigt, kann der Generator zwei oder drei parallel geschaltete Strings enthalten. Der String, der an den Wechselrichter angeschaltet ist, stellt den Stringstrom zur Verfügung. Wie ich nachfolgend zeige, ist am „Arbeitspunkt“ eine bestimmte Stringleistung als Produkt aus Stringspannung mit Stringstrom zu erwarten. Wird für den PV-Generator eine Leistung benötigt, die die Stringleistung eines einzelnen Strings übersteigt, sind entsprechend, mit gleichem Aufbau, parallele Strings zu ergänzen. Die Generatorleistung ergibt sich dann aus der Summe der parallel geschalteten Strings.

Ein Blick hinter die Kulissen

Um im zweiten Schritt stärker die Hintergründe zu erläutern, dem sich ein reales Projekt unterwerfen muss, möchte ich auf wichtige Details der Solarzellen eingehen. 

  • Sonnenlicht erreicht den Erdboden 

Die solare Leistung der Sonne außerhalb der Erdatmosphäre beträgt 1.361 W/m2. Der Wert wird als Solarkonstante bezeichnet. 

Auf dem Weg durch die Atmosphäre sind verschiedene Effekte gegeben, die die maximal am Erdboden auftretende solare Leistung der Sonne abschwächen. Es wird mit einer maximalen Einstrahlungsleistung von 1.000 W/m2 in unserer Region auf einer optimal zur Sonne ausgerichteten Solargeneratorfläche gerechnet.

Wie wir wissen, setzt sich das Sonnenlicht (Photonen) aus allen Farben (Spektralfarben) zwischen Infrarot (niedrigere Leistung, hier Leistungsdichte) bis hin zum Ultraviolett (hohe Leistung) zusammen. Dieses Farbspektrum kann mit Wellenlängen charakterisiert werden. Es können dem Sonnenlicht infrarote Anteile bis 2.500 nm (Nanometer Wellenlänge) bzw. dem UV-Anteil (Ultraviolett) etwa bei 380 nm Wellenlänge zugeordnet werden (siehe Abb. 4). Die grau unterlegte Fläche entspricht der terrestrischen Sonnenstrahlung. Hierbei wird erkennbar, dass die auf der Erde auftreffende solare Leistungsdichte nicht kontinuierlich ist und auch Einschnitte hat. Dieses ist z.T. durch die Wechselwirkungen des Sonnenlichts in der Atmosphäre bedingt.

Abbildung 4: Solare Strahlungsintensität am Erdboden und nutzbarer Anteil einer Silizium-Solarzelle (Quelle: Vorlesung Scharfenberg)
  • Spektrale Empfindlichkeit der Solarzelle 

Aus Abb. 4 ist zudem der Verlauf eines Leistungsanteils als rote Fläche zu entnehmen. Dieses ist der energetische Anteil, der von der Silizium-Solarzelle aus dem Sonnenlicht am Erdboden genutzt werden kann. Es ist erkennbar, dass ein erheblicher Anteil der Sonnenenergie durch die Solarzelle nicht nutzbar ist, was bedeutet, dass das Sonnenlicht nur zu einem Teil in elektrischen Strom gewandelt wird. Dieser Anteil bestimmt den Wirkungsgrad der Solarzelle (siehe weiter hinten). Der nicht nutzbare Anteil entsteht als Wärme und muss über das Solarmodul abgeführt werden. Hier setzen Entwicklungen zu Hybrid-PV/T-Kollektor-Modulen an, die Solarmodule mit thermischen Absorbern kombinieren, damit die thermische Energie nicht verloren geht. 

  • Solarzellen-Technologien und Wirkungsgrade

Im bisherigen Anteil des Artikels habe ich Solarzellen auf der Basis von Siliziummaterial behandelt. Dieses Halbleitermaterial dominiert den Markt für die Photovoltaiktechnologie. Dabei ist zwischen monokristallinem und polykristallinem Material zu unterscheiden. Monokristalline Solarzellen sind aus einem Einkristall entstanden. Die Herstellung ist aufwendiger und damit teurer gegenüber polykristallinen Solarzellen. Aktuell haben monokristalline Solarmodule den größten Marktanteil aufgrund des besseren Wirkungsgrads. 

Neben den genannten Technologien auf der Basis von kristallinem Siliziummaterial, sind zudem Dünnschicht-Technologien in amorphem Silizium und anderen Halbleitermaterialien mit kleinem Marktanteil angewandt. 

TechnologienWirkungsgradBemerkung
Monokristalline Solarzellen20 % bis 22,5 %             Aufwendige Herstellung,
Schwachlichtnutzung vorteilhaft, 
Zuverlässigkeit 25 Jahre
Polykristalline Solarzellen17 % bis 20 %             Herstellung relativ einfacher,
Schwachlichtnutzung weniger vorteilhaft, 
Zuverlässigkeit 25 Jahre
Dünnschicht Solarzellen10 % bis 13 %             Einfache Herstellung, geringes Gewicht, gute Schwachlichtnutzung
Zuverlässigkeit 20 Jahre
Forschungs- und Entwicklungsbereich
Multijunction-Solarzellenca. 25 %Mehrere Halbleitermaterialien (z.B. 3 Ebenen) wandeln unterschiedliche Lichtwellenlängen in elektrische Energie 
III-V Solarzellenca. 40 %Kombination verschiedener Halbleiter-Elemente auch in Verbindung mit Linsen zur Fokussierung des Sonnenlichts

Tabelle 1: Zusammenstellung der Kerneigenschaften zu Zelltechnologien  

  • Die Solarzelle ist kein statisches Element  

Im Tagesverlauf erfährt der Solargenerator erhebliche Unterschiede in der Bestrahlungsstärke. Die größten Auswirkungen haben die Rotation der Erde mit dem Tagesgang und die Änderung der Höhenwinkel der Sonne infolge der Jahreszeiten. Aber auch die Bewölkung nimmt starken Einfluss auf die eingestrahlte solare Leistung am Solargenerator. 

Betrachten wir die erzeugte elektrische Leistung eines Solarmoduls. Die elektrische Leistung eines Solarmoduls ist das Produkt aus Spannung und Stromstärke, entstehend aus der Summe der Einzelleistungen der geschalteten Solarzellen. Damit ist das technische Verhalten des Solargenerators insgesamt von den Charakteristika der einzelnen Solarzellen abhängig.  Nachstehend erfolgt die Darstellung auf Basis der Solarmoduln. 

Abbildung 5: Strom-Spannungskennline eines Moduls bestehend aus kristallinen Silizium-Solarzellen (Quelle: Vorlesung Scharfenberg)

Die Modulkennlinie in Abb. 5 zeigt die typische Strom-Spannungs-Charakteristik eines Solarmoduls in einem solaren Bestrahlungszustand. Die Beispiels-Kennlinie wird aufgespannt zwischen zwei kennzeichnenden Eckpunkten:

Leerlauf:  Modulspannung 30 V (keine Last), die Stromstärke beträgt 0 A

Kurzschluss:  Modulspannung  0 V (extrem hohe Last), die Stromstärke beträgt 4,5 A

Der „Arbeitspunkt“ des Moduls liegt zwischen den beiden Eckpunkten und erreicht das Optimum an einem Punkt, in dem das Produkt aus Stromstärke und Spannung das Maximum hat. Dieser Punkt wird „Maximum Power Point“ (MPP) genannt.

Ohne detaillierte Ausführung soll hier gesagt werden, dass jede sich ändernden Umgebungsbedingung zu einem neuen Bestrahlungszustand führt und damit die Kennlinie dynamisch verändert, wodurch der MPP stets neu bestimmt werden muss. Diese Aufgabe übernimmt der Wechselrichter. Der Wechselrichter mit seinen Aufgaben und die Einbettung des solaren Gesamtsystems in die Umgebung des Niederspannungs- bzw. Verteilnetzes wird in einem zu dieser Serie abschließenden Artikel behandelt.  

BERR Ökostrom für Bernhardswald

Ludwig Meier (BERR Vorstand), Florian Obermeier (1.Bürgermeister Bernhardswald) und Joachim Scherrer (BERR Vorstandsvorsitzender), v.l.n.r., bei der Vertragsunterzeichnung

Vierhundert kWp auf kommunalen Dächern

Die Gemeinde Bernardswald hat mit der BERR einen Vertrag über die Lieferung von regionalem, erneuerbarem Strom geschlossen. Auf mehreren Gebäuden der Gemeinde werden demnächst Photovoltaik-Anlagen installiert, und zwar mit einer Kapazität von insgesamt etwa 400 kWp. Konkret geht es um zwei Schulen (Pettenreuth und Bernhardswald), den Kindergarten, den Recyclinghof  und mehrere Feuerwehrgebäude.

Die Gemeinde hatte in einem ersten Anlauf 2023 eine Ausschreibung für die Projekte gestartet, allerdings ohne Erfolg. Nach dem Kontakt mit der BERR und einer Vorstellung durch Jochen Scherrer beim Gemeinderat war die Entscheidung relativ schnell getroffen. Die Argumente waren überzeugend:

  • keine eigenen Investitionskosten für die Kommune
  • günstiger, regional erzeugter Strom von den eigenen Dächern der Gemeinde
  • die Bürgerinnen und Bürger können selber Anteile an der Genossenschaft erwerben und damit am Erfolg der Ablagen partizipieren
  • Kein fremder Groß-Investor mit einer womöglich undurchsichtigen Geschäftsstrategie

Bernhardswald will Vorbild sein

Der erste Bürgermeister, Florian Obermeier ist sehr zufrieden mit der gefundenen Vereinbarung.

„Die Gemeinde kann damit auch ihre Vorbildfunktion erfüllen, das ist eine gute Sache und wir setzen ein klares Zeichen. Unsere Kommune ist in der Energiewende insgesamt auch gut mit dabei, wir haben zum Beispiel zwei große Freiflächenanlagen im Gemeindegebiet. Und wir haben, teilweise in Kooperation mit den Nachbargemeinden, deutlich mehr Flächen als gefordert auch für den Ausbau von Windenergie gemeldet. Wir sind froh, dass es die BERR gibt und dass wir auf diesem Weg eine gemeinschaftstaugliche Lösung gefunden haben. Wenn möglich, werden wir auch noch weitere Taten folgen lassen, zum Beispiel prüfen wir eine Teilfläche von unserem Bauhof auf PV-Tauglichkeit.

BERR eG und naturstrom feiern 10-jährige Zusammenarbeit

Schon gewusst? Erstes Mieterstrom-Projekt Bayerns startete in Regensburg

Regensburg, 22. Februar 2024. Joachim Scherrer von der Bürger Energie Region Regensburg eG (BERR) besuchte pünktlich zum 10. Jubiläum der Zusammenarbeit den neuen naturstrom-Standort in Regensburg.

Von links nach rechts: Sonja Frisch (naturstrom), Joachim Scherrer (BERR eG), Franziska Mehrbach (naturstrom), Andrea Bayer (naturstrom), Justin Schlecht (BERR eG)

Joachim Scherrer und Justin Schlecht waren im neuen naturstrom-Büro in der Ludwig-Eckert-Straße in Regensburg eingeladen. Gefeiert wurde nicht nur die Eröffnung des 14. naturstrom-Standorts, sondern auch die 10-jährige Kooperation der beiden Energiewende-Vorreiter. Diese nahm mit einem besonderen Projekt ihren Anfang.

Erstes Mieterstromprojekt Bayerns in Regensburg

2014 hat die BERR in enger Zusammenarbeit mit der NaBau eG und naturstrom das „Haus mit Zukunft“ entwickelt. Der Strom aus der Photovoltaik-Anlage vom Dach fließt direkt in die Steckdose, ohne Umwege über das öffentliche Netz. Dadurch entfallen die Netzentgelte und Abgaben an den Netzbetreiber. So können die Bewohnerinnen und Bewohner den gebäudeeigenen Solarstrom als Mieterstrom-Tarif beziehen. Noch vor der offiziellen Einführung des Konzepts „Mieterstrom“ wurde so das erste Mieterstromprojekt Bayerns in Regensburg geboren.

Energiewende passiert vor Ort

Für Andrea Bayer ist es eine Herzensangelegenheit, mit regionalen dezentralen Erzeugungsanlagen eine enkeltaugliche Zukunft zu schaffen. Gemeinsam mit den Menschen vor Ort, das heißt mit einer engen Einbindung von Bürgerinnen und Bürgern. So werden Anlagen wie zum Beispiel Solarparks nicht an externe Betreiber verkauft, sondern generieren im Betrieb mit lokalen Partnern Gewinne vor Ort. naturstrom legt von Anfang an größten Wert auf Information, Transparenz und Teilhabe. 

Die 10-jährige Zusammenarbeit mit der BERR ist auch ein klarer Wegweiser nach Regensburg gewesen. Für Andrea Bayer steht fest: „Die Wertschöpfung beim Ausbau der Erneuerbaren muss in der Region, also bei den Bürger:innen und den Kommunen bleiben.“ Dafür steht naturstrom als Pionier der Energiewende seit 25 Jahren.

Joachim Scherrer:

„Ich war richtig gerührt, dass wir von den Naturstrom-Leuten einen Geburtstagskuchen überreicht bekamen. Das ist wirklich eine tolle Kooperation, und zwar schon eine lange Zeit. So meistern wir die Energiewende vor Ort in Regensburg und Umgebung gemeinsam mit engagierten, loyalen und fairen Partnerschaften…“